调试中...
调试中...
题目描述
题目描述
题解
题解
提交记录
提交记录
代码
代码
测试用例
测试用例
测试结果
测试结果
中等
相关标签
相关企业
提示

给你一个下标从 0 开始、大小为 n x n 的二维矩阵 grid ,其中 (r, c) 表示:

  • 如果 grid[r][c] = 1 ,则表示一个存在小偷的单元格
  • 如果 grid[r][c] = 0 ,则表示一个空单元格

你最开始位于单元格 (0, 0) 。在一步移动中,你可以移动到矩阵中的任一相邻单元格,包括存在小偷的单元格。

矩阵中路径的 安全系数 定义为:从路径中任一单元格到矩阵中任一小偷所在单元格的 最小 曼哈顿距离。

返回所有通向单元格 (n - 1, n - 1) 的路径中的 最大安全系数

单元格 (r, c) 的某个 相邻 单元格,是指在矩阵中存在的 (r, c + 1)(r, c - 1)(r + 1, c)(r - 1, c) 之一。

两个单元格 (a, b)(x, y) 之间的 曼哈顿距离 等于 | a - x | + | b - y | ,其中 |val| 表示 val 的绝对值。

 

示例 1:

输入:grid = [[1,0,0],[0,0,0],[0,0,1]]
输出:0
解释:从 (0, 0) 到 (n - 1, n - 1) 的每条路径都经过存在小偷的单元格 (0, 0) 和 (n - 1, n - 1) 。

示例 2:

输入:grid = [[0,0,1],[0,0,0],[0,0,0]]
输出:2
解释:
上图所示路径的安全系数为 2:
- 该路径上距离小偷所在单元格(0,2)最近的单元格是(0,0)。它们之间的曼哈顿距离为 | 0 - 0 | + | 0 - 2 | = 2 。
可以证明,不存在安全系数更高的其他路径。

示例 3:

输入:grid = [[0,0,0,1],[0,0,0,0],[0,0,0,0],[1,0,0,0]]
输出:2
解释:
上图所示路径的安全系数为 2:
- 该路径上距离小偷所在单元格(0,3)最近的单元格是(1,2)。它们之间的曼哈顿距离为 | 0 - 1 | + | 3 - 2 | = 2 。
- 该路径上距离小偷所在单元格(3,0)最近的单元格是(3,2)。它们之间的曼哈顿距离为 | 3 - 3 | + | 0 - 2 | = 2 。
可以证明,不存在安全系数更高的其他路径。

 

提示:

  • 1 <= grid.length == n <= 400
  • grid[i].length == n
  • grid[i][j]01
  • grid 至少存在一个小偷
通过次数
6.5K
提交次数
20.3K
通过率
32.0%


相关企业

提示 1
Consider using both BFS and binary search together.

提示 2
Launch a BFS starting from all the cells containing thieves to calculate d[x][y] which is the smallest Manhattan distance from (x, y) to the nearest grid that contains thieves.

提示 3
To check if the bottom-right cell of the grid can be reached through a path of safeness factor v, eliminate all cells (x, y) such that grid[x][y] < v. if (0, 0) and (n - 1, n - 1) are still connected, there exists a path between (0, 0) and (n - 1, n - 1) of safeness factor v.

提示 4
Binary search over the final safeness factor v.

相似题目

评论 (0)

贡献者
© 2025 领扣网络(上海)有限公司
0 人在线
行 1,列 1
运行和提交代码需要登录
grid =
[[1,0,0],[0,0,0],[0,0,1]]
Source