调试中...
调试中...
题目描述
题目描述
题解
题解
提交记录
提交记录
代码
代码
测试用例
测试用例
测试结果
测试结果
中等
相关标签
相关企业
提示

给你一个下标从 0 开始、由 n 个整数组成的数组 nums 和一个整数 target

你的初始位置在下标 0 。在一步操作中,你可以从下标 i 跳跃到任意满足下述条件的下标 j

  • 0 <= i < j < n
  • -target <= nums[j] - nums[i] <= target

返回到达下标 n - 1 处所需的 最大跳跃次数

如果无法到达下标 n - 1 ,返回 -1

 

示例 1:

输入:nums = [1,3,6,4,1,2], target = 2
输出:3
解释:要想以最大跳跃次数从下标 0 到下标 n - 1 ,可以按下述跳跃序列执行操作:
- 从下标 0 跳跃到下标 1 。 
- 从下标 1 跳跃到下标 3 。 
- 从下标 3 跳跃到下标 5 。 
可以证明,从 0 到 n - 1 的所有方案中,不存在比 3 步更长的跳跃序列。因此,答案是 3 。 

示例 2:

输入:nums = [1,3,6,4,1,2], target = 3
输出:5
解释:要想以最大跳跃次数从下标 0 到下标 n - 1 ,可以按下述跳跃序列执行操作:
- 从下标 0 跳跃到下标 1 。 
- 从下标 1 跳跃到下标 2 。 
- 从下标 2 跳跃到下标 3 。 
- 从下标 3 跳跃到下标 4 。 
- 从下标 4 跳跃到下标 5 。 
可以证明,从 0 到 n - 1 的所有方案中,不存在比 5 步更长的跳跃序列。因此,答案是 5 。 

示例 3:

输入:nums = [1,3,6,4,1,2], target = 0
输出:-1
解释:可以证明不存在从 0 到 n - 1 的跳跃序列。因此,答案是 -1 。 

 

提示:

  • 2 <= nums.length == n <= 1000
  • -109 <= nums[i] <= 109
  • 0 <= target <= 2 * 109
通过次数
8.2K
提交次数
21.8K
通过率
37.7%

相关标签

相关企业

提示 1
Use a dynamic programming approach.

提示 2
Define a dynamic programming array dp of size n, where dp[i] represents the maximum number of jumps from index 0 to index i.

提示 3
For each j iterate over all i < j. Set dp[j] = max(dp[j], dp[i] + 1) if -target <= nums[j] - nums[i] <= target.


评论 (0)

贡献者
© 2025 领扣网络(上海)有限公司
0 人在线
行 1,列 1
nums =
[1,3,6,4,1,2]
target =
2
Source