调试中...
调试中...
题目描述
题目描述
题解
题解
提交记录
提交记录
代码
代码
测试用例
测试用例
测试结果
测试结果
中等
相关标签
相关企业

给你一个下标从 0 开始、大小为 n x n 的矩阵 grid ,其中 n 为奇数,且 grid[r][c] 的值为 012

如果一个单元格属于以下三条线中的任一一条,我们就认为它是字母 Y 的一部分:

  • 从左上角单元格开始到矩阵中心单元格结束的对角线。
  • 从右上角单元格开始到矩阵中心单元格结束的对角线。
  • 从中心单元格开始到矩阵底部边界结束的垂直线。

当且仅当满足以下全部条件时,可以判定矩阵上写有字母 Y

  • 属于 Y 的所有单元格的值相等。
  • 不属于 Y 的所有单元格的值相等。
  • 属于 Y 的单元格的值与不属于Y的单元格的值不同。

每次操作你可以将任意单元格的值改变为 012 。返回在矩阵上写出字母 Y 所需的 最少 操作次数。

 

示例 1:

输入:grid = [[1,2,2],[1,1,0],[0,1,0]]
输出:3
解释:将在矩阵上写出字母 Y 需要执行的操作用蓝色高亮显示。操作后,所有属于 Y 的单元格(加粗显示)的值都为 1 ,而不属于 Y 的单元格的值都为 0 。
可以证明,写出 Y 至少需要进行 3 次操作。

示例 2:

输入:grid = [[0,1,0,1,0],[2,1,0,1,2],[2,2,2,0,1],[2,2,2,2,2],[2,1,2,2,2]]
输出:12
解释:将在矩阵上写出字母 Y 需要执行的操作用蓝色高亮显示。操作后,所有属于 Y 的单元格(加粗显示)的值都为 0 ,而不属于 Y 的单元格的值都为 2 。
可以证明,写出 Y 至少需要进行 12 次操作。

 

提示:

  • 3 <= n <= 49
  • n == grid.length == grid[i].length
  • 0 <= grid[i][j] <= 2
  • n 为奇数。
通过次数
5.2K
提交次数
8.4K
通过率
62.5%


相关企业

评论 (0)

贡献者
© 2025 领扣网络(上海)有限公司
0 人在线
行 1,列 1
运行和提交代码需要登录
grid =
[[1,2,2],[1,1,0],[0,1,0]]
Source