调试中...
调试中...
题目描述
题目描述
题解
题解
提交记录
提交记录
代码
代码
测试用例
测试用例
测试结果
测试结果
中等
相关标签
相关企业
提示

给你一个正整数 n ,表示总共有 n 个城市,城市从 1 到 n 编号。给你一个二维数组 roads ,其中 roads[i] = [ai, bi, distancei] 表示城市 ai 和 bi 之间有一条 双向 道路,道路距离为 distancei 。城市构成的图不一定是连通的。

两个城市之间一条路径的 分数 定义为这条路径中道路的 最小 距离。

城市 1 和城市 n 之间的所有路径的 最小 分数。

注意:

  • 一条路径指的是两个城市之间的道路序列。
  • 一条路径可以 多次 包含同一条道路,你也可以沿着路径多次到达城市 1 和城市 n 。
  • 测试数据保证城市 1 和城市n 之间 至少 有一条路径。

 

示例 1:

输入:n = 4, roads = [[1,2,9],[2,3,6],[2,4,5],[1,4,7]]
输出:5
解释:城市 1 到城市 4 的路径中,分数最小的一条为:1 -> 2 -> 4 。这条路径的分数是 min(9,5) = 5 。
不存在分数更小的路径。

示例 2:

输入:n = 4, roads = [[1,2,2],[1,3,4],[3,4,7]]
输出:2
解释:城市 1 到城市 4 分数最小的路径是:1 -> 2 -> 1 -> 3 -> 4 。这条路径的分数是 min(2,2,4,7) = 2 。

 

提示:

  • 2 <= n <= 105
  • 1 <= roads.length <= 105
  • roads[i].length == 3
  • 1 <= ai, bi <= n
  • ai != bi
  • 1 <= distancei <= 104
  • 不会有重复的边。
  • 城市 1 和城市 n 之间至少有一条路径。
通过次数
11.7K
提交次数
26K
通过率
45.0%


相关企业

提示 1
Can you solve the problem if the whole graph is connected?

提示 2
Notice that if the graph is connected, you can always use any edge of the graph in your path.

提示 3
How to solve the general problem in a similar way? Remove all the nodes that are not connected to 1 and n, then apply the previous solution in the new graph.


评论 (0)

贡献者
© 2025 领扣网络(上海)有限公司
0 人在线
行 1,列 1
运行和提交代码需要登录
n =
4
roads =
[[1,2,9],[2,3,6],[2,4,5],[1,4,7]]
Source