调试中...
调试中...
题目描述
题目描述
题解
题解
提交记录
提交记录
代码
代码
测试用例
测试用例
测试结果
测试结果
中等
相关标签
相关企业

机器人在一个无限大小的 XY 网格平面上行走,从点 (0, 0) 处开始出发,面向北方。该机器人可以接收以下三种类型的命令 commands

  • -2 :向左转 90
  • -1 :向右转 90
  • 1 <= x <= 9 :向前移动 x 个单位长度

在网格上有一些格子被视为障碍物 obstacles 。第 i 个障碍物位于网格点  obstacles[i] = (xi, yi)

机器人无法走到障碍物上,它将会停留在障碍物的前一个网格方块上,并继续执行下一个命令。

返回机器人距离原点的 最大欧式距离平方 。(即,如果距离为 5 ,则返回 25

 

注意:

  • 北方表示 +Y 方向。
  • 东方表示 +X 方向。
  • 南方表示 -Y 方向。
  • 西方表示 -X 方向。
  • 原点 [0,0] 可能会有障碍物。

 

示例 1:

输入:commands = [4,-1,3], obstacles = []
输出:25
解释:
机器人开始位于 (0, 0):
1. 向北移动 4 个单位,到达 (0, 4)
2. 右转
3. 向东移动 3 个单位,到达 (3, 4)
距离原点最远的是 (3, 4) ,距离为 32 + 42 = 25

示例 2:

输入:commands = [4,-1,4,-2,4], obstacles = [[2,4]]
输出:65
解释:机器人开始位于 (0, 0):
1. 向北移动 4 个单位,到达 (0, 4)
2. 右转
3. 向东移动 1 个单位,然后被位于 (2, 4) 的障碍物阻挡,机器人停在 (1, 4)
4. 左转
5. 向北走 4 个单位,到达 (1, 8)
距离原点最远的是 (1, 8) ,距离为 12 + 82 = 65

示例 3:

输入:commands = [6,-1,-1,6], obstacles = []
输出:36
解释:机器人开始位于 (0, 0):
1. 向北移动 6 个单位,到达 (0, 6).
2. 右转
3. 右转
4. 向南移动 6 个单位,到达 (0, 0).
机器人距离原点最远的点是 (0, 6),其距离的平方是 62 = 36 个单位。

提示:

  • 1 <= commands.length <= 104
  • commands[i] 的值可以取 -2-1 或者是范围 [1, 9] 内的一个整数。
  • 0 <= obstacles.length <= 104
  • -3 * 104 <= xi, yi <= 3 * 104
  • 答案保证小于 231
通过次数
47.4K
提交次数
99.3K
通过率
47.8%


相关企业

相似题目

评论 (0)

贡献者
© 2025 领扣网络(上海)有限公司
0 人在线
行 1,列 1
运行和提交代码需要登录
commands =
[4,-1,3]
obstacles =
[]
Source